Qwen3-Coder-Plus
qwen/qwen3-coder-plus
Powered by Qwen3, this is a powerful Coding Agent that excels in tool calling and environment interaction to achieve autonomous programming. It combines outstanding coding proficiency with versatile general-purpose abilities.
ByqwenInput typeOutput type
Recent activity on Qwen3-Coder-Plus
Tokens processed per day
Thoughput
(tokens/s)
ProvidersMin (tokens/s)Max (tokens/s)Avg (tokens/s)
Alibaba Cloud5.554.428.94
First Token Latency
(ms)
ProvidersMin (ms)Max (ms)Avg (ms)
Alibaba Cloud674996808.24
Providers for Qwen3-Coder-Plus
ZenMux Provider to the best providers that are able to handle your prompt size and parameters, with fallbacks to maximize uptime.
Latency
0.81
s
Throughput
22.8
tps
Uptime
100.00
%
Recent uptime
Oct 10,2025 - 3 PM100.00%
Price
Tiered pricing
0 <= Input < 32k
Input
$ 1
/ M tokens
Output
$ 5
/ M tokens
Cache read
$ 0.1
/ M tokens
Cache write 5m
$ 1.25
/ M tokens
Cache write 1h
-
Cache write
-
Web search
-
Model limitation
Context
1000.00K
Max output
65.54K
Supported Parameters
max_completion_tokens
temperature
top_p
frequency_penalty
-
presence_penalty
seed
logit_bias
-
logprobs
top_logprobs
response_format
stop
tools
tool_choice
parallel_tool_calls
Model Protocol Compatibility
openai
anthropic
Data policy
Prompt training
false
Prompt Logging
Zero retention
Moderation
Responsibility of developer
Status Page
status page
Sample code and API for Qwen3-Coder-Plus
ZenMux normalizes requests and responses across providers for you.
OpenAI-PythonPythonTypeScriptOpenAI-TypeScriptcURL
python
from openai import OpenAI

client = OpenAI(
  base_url="https://zenmux.ai/api/v1",
  api_key="<ZenMux_API_KEY>",
)

completion = client.chat.completions.create(
  model="qwen/qwen3-coder-plus",
  messages=[
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": "What is in this image?"
        }
      ]
    }
  ]
)
print(completion.choices[0].message.content)